Metals (Jan 2023)

Evolution of the Shadow Effect with Film Thickness and Substrate Conductivity on a Hemispherical Workpiece during Magnetron Sputtering

  • Huaiyuan Liu,
  • Donglin Ma,
  • Yantao Li,
  • Lina You,
  • Yongxiang Leng

DOI
https://doi.org/10.3390/met13010165
Journal volume & issue
Vol. 13, no. 1
p. 165

Abstract

Read online

When depositing films on a complex workpiece surface by magnetron sputtering, the shadow effect occurs and causes the columnar structure to tilt toward the substrate owing to the oblique incident angle of the plasma flux, affecting the microstructure and properties of the films. Improving the surface diffusion could alleviate the shadow effect, whereas changing the energy of the deposited particles could improve surface diffusion. Different substrate conductivities could affect the energy of the deposited particles when they reach the substrate. In this study, Si (semiconductor) and SiO2 (insulator) sheets are mounted on the inner surface of a hemispherical workpiece, and Ti films with different thicknesses (adjusted by the deposition time) are deposited on the inner surface of the hemispherical workpiece by direct current magnetron sputtering. The results show that there is a threshold thickness and incident angle before the films are affected by the shadow effect. The threshold could be affected by the film thickness, the incident angle, and the conductivity of the substrate. The threshold would decrease as the film thickness or incidence angle increased or the conductivity of the substrate decreased. When the film thickness or incident angle does not reach the threshold, the film would not be affected by the shadow effect. In addition, the film deposited later would tilt the vertical columnar structure of the film deposited earlier. Owing to the different conductivities, the shadow effect manifest earlier for Ti films deposited on the insulator SiO2 than for films deposited on the semiconductor Si when the film thickness is >500 nm.

Keywords