GCB Bioenergy (Aug 2021)

Brassica carinata biomass, yield, and seed chemical composition response to nitrogen rates and timing on southern Coastal Plain soils in the United States

  • Mahesh Bashyal,
  • Michael J. Mulvaney,
  • Dewey Lee,
  • Chris Wilson,
  • Joseph E. Iboyi,
  • Ramon G. Leon,
  • Gabriel M. Landry,
  • Kenneth J. Boote

DOI
https://doi.org/10.1111/gcbb.12846
Journal volume & issue
Vol. 13, no. 8
pp. 1275 – 1289

Abstract

Read online

Abstract Brassica carinata (carinata), a non‐food oilseed feedstock mainly used for biofuel, is a relatively new alternative winter crop in the southeastern (SE) United States (US). However, there are limited N rate and N application timing data available at the regional scale. These data are needed to expand production in the SE US. An N rate study was conducted during the winter–spring growing seasons during 2017–2018 and 2018–2019 in Florida, US, and at three locations during 2018–2019 in Georgia, US, to quantify the effects of N rate (0, 45, 90, 134, and 179 kg N ha−1) on carinata nutrient uptake, biomass, seed yield, and seed chemical composition. Seed yield showed a linear response up to 134 kg N ha−1. Seed protein and glucosinolate concentrations decreased from 0 to 90 kg N ha−1, then increased from 90 to 179 kg N ha−1. Seed oil concentration was inversely related to seed protein concentration. A two‐factor N application timing study (4 N application timing: at‐plant, pre‐bolting, at‐plant + pre‐bolting, at‐plant + pre‐bolting + bolting × 4 N rates: 0, 45, 90, and 134 kg N ha−1) was conducted in Georgia, US, over three site‐years to quantify the effect of N application timing on yield and agronomic and economic optimum N rates (AONR and EONR, respectively). All split applications increased AONR by at least 10 kg N ha−1 compared to a single at‐plant application. A two‐split N application was more profitable than either a single N application or a three‐split N application based on marginal return. A two‐way split application (at‐plant + pre‐bolting) at 134 kg N ha−1 is recommended to optimize yield and economical production. Based on uncertainty analyses, the 50% credible interval of EONR occurred between 116 and 152 kg N ha−1, with a median estimate at 130 kg N ha−1.

Keywords