BMC Research Notes (Aug 2012)

Rationalization of paclitaxel insensitivity of yeast β-tubulin and human βIII-tubulin isotype using principal component analysis

  • Das Lalita,
  • Bhattacharya Bhabatarak,
  • Basu Gautam

DOI
https://doi.org/10.1186/1756-0500-5-395
Journal volume & issue
Vol. 5, no. 1
p. 395

Abstract

Read online

Abstract Background The chemotherapeutic agent paclitaxel arrests cell division by binding to the hetero-dimeric protein tubulin. Subtle differences in tubulin sequences, across eukaryotes and among β-tubulin isotypes, can have profound impact on paclitaxel-tubulin binding. To capture the experimentally observed paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin, within a common theoretical framework, we have performed structural principal component analyses of β-tubulin sequences across eukaryotes. Results The paclitaxel-resistance of human βIII tubulin isotype and yeast β-tubulin uniquely mapped on to the lowest two principal components, defining the paclitaxel-binding site residues of β-tubulin. The molecular mechanisms behind paclitaxel-resistance, mediated through key residues, were identified from structural consequences of characteristic mutations that confer paclitaxel-resistance. Specifically, Ala277 in βIII isotype was shown to be crucial for paclitaxel-resistance. Conclusions The present analysis captures the origin of two apparently unrelated events, paclitaxel-insensitivity of yeast tubulin and human βIII tubulin isotype, through two common collective sequence vectors.