BMC Research Notes (Apr 2024)

Selective epigenetic alterations in RNF43 in pancreatic exocrine cells from high-fat-diet-induced obese mice; implications for pancreatic cancer

  • Tomoyuki Araki,
  • Naofumi Miwa

DOI
https://doi.org/10.1186/s13104-024-06757-0
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 6

Abstract

Read online

Abstract Objective Pancreatic cancer (PC) originates and progresses with genetic mutations in various oncogenes and suppressor genes, notably KRAS, CDKN2A, TP53, and SMAD4, prevalent across diverse PC cells. In addition to genetic mutations/deletions, persistent exposure to high-risk factors, including obesity, induces whole-genome scale epigenetic alterations contributing to malignancy. However, the impact of obesity on DNA methylation in the presymptomatic stage, particularly in genes prone to PC mutation, remains uncharacterized. Results We analyzed the methylation levels of 197 loci in six genes (KRAS, CDKN2A, TP53, SMAD4, GNAS and RNF43) using Illumina Mouse Methylation BeadChip array (280 K) data from pancreatic exocrine cells obtained from high-fat-diet (HFD) induced obese mice. Results revealed no significant differences in methylation levels in loci between HFD- and normal-fat-diet (NFD)-fed mice, except for RNF43, a negative regulator of Wnt signaling, which showed hypermethylation in three loci. These findings indicate that, in mouse pancreatic exocrine cells, high-fat dietary obesity induced aberrant DNA methylation in RNF43 but not in other frequently mutated PC-related genes.

Keywords