PLoS ONE (Jan 2022)

Using DNA metabarcoding and a novel canid-specific blocking oligonucleotide to investigate the composition of animal diets of raccoon dogs (Nyctereutes procyonoides) inhabiting the waterside area in Korea

  • Cheolwoon Woo,
  • Priyanka Kumari,
  • Kyung Yeon Eo,
  • Woo-Shin Lee,
  • Junpei Kimura,
  • Naomichi Yamamoto

Journal volume & issue
Vol. 17, no. 7

Abstract

Read online

The raccoon dog (Nyctereutes procyonoides) is known to be an opportunistic generalist who feeds on a wide variety of foods. Historically, their diet has been investigated by morphological observation of undigested remains in feces, requiring specialized knowledge such as osteology, zoology, and phytology. Here, we used DNA metabarcoding of vertebrate 12S rRNA gene and invertebrate 16S rRNA gene to investigate their fecal contents. Additionally, we developed a blocking oligonucleotide that specifically inhibits the amplification of the canid 12S rRNA gene. We confirmed that the blocking oligonucleotide selectively inhibit the amplification of raccoon dog’s DNA without significantly changing the composition of the preys’ DNA. We found that the main foods of raccoon dogs in our study area, the waterside of paddy fields in Korea, were fishes such as Cyprinidae and insects such as mole crickets, which makes sense given the Korean fauna and their well-known opportunistic feeding behaviors. As a method to conveniently and objectively investigate feeding habits of raccoon dogs, this study provided baseline information on DNA metabarcoding. By using DNA metabarcoding, it is expected that the diet habits and ecology of raccoon dogs will be better understood by future research.