Frontiers in Plant Science (Jul 2018)

Response to Nitrogen Deficiency and Compensation on Physiological Characteristics, Yield Formation, and Nitrogen Utilization of Rice

  • Qiangqiang Xiong,
  • Guoping Tang,
  • Lei Zhong,
  • Haohua He,
  • Xiaorong Chen

DOI
https://doi.org/10.3389/fpls.2018.01075
Journal volume & issue
Vol. 9

Abstract

Read online

Based on the theory of ecological crop nutrient deficiency and compensation effect, the nitrogen (N) deficiency at tillering stage and N compensation at young panicle differentiation stage in rice (Oryza sativa L.) was selected to study. Four N treatments were treated, and the effects of N deficiency and compensation were investigated on grain yield, N uptake and utilization and the physiological characteristics of rice. The results showed that the yield per plant presented an equivalent compensatory effect. Double N compensation led to superiority in the number of effective panicle per plant, increased the activity of nitrate reductase and glutamine synthetase. The content of endogenous growth-inhibitory hormone abscisic acid (ABA) decreased in the leaves, photosynthesis was enhanced, and the number of tillers per plant increased after double N compensation. During maturation stage, the panicle dry weigh in T1 (double N compensation at young panicle differentiation stage, after N deficiency at tillering stage) was higher than that in CK1 (constant supply of N throughout different stages of growth) and the biomass per plant in T1 increased by 1.47% compared with CK1. N contents in all organs, N accumulation, and total N content were all higher in T1 during maturation stage. Moreover, N agronomic efficiency, N physiological efficiency, and N partial factor productivity were optimized for T1 and CK2 (constant N compensation at young panicle differentiation stage, after N deficiency at tillering stage) compared with CK1. This study contributes to the understanding of the physiological mechanisms underlying the compensation of N deficiency in rice.

Keywords