New Insights into the Phosphorus Acquisition Capacity of Chilean Lowland Quinoa Roots Grown under Low Phosphorus Availability
Pedro M. de Souza Campos,
Sebastián Meier,
Arturo Morales,
Laura Lavanderos,
Javiera Nahuelcura,
Antonieta Ruiz,
Álvaro López-García,
Alex Seguel
Affiliations
Pedro M. de Souza Campos
Instituto de Investigaciones Agropecuarias, INIA Carillanca, km 10 camino Cajón-Vilcún s/n, Temuco P.O. Box 929, Chile
Sebastián Meier
Instituto de Investigaciones Agropecuarias, INIA Carillanca, km 10 camino Cajón-Vilcún s/n, Temuco P.O. Box 929, Chile
Arturo Morales
Instituto de Investigaciones Agropecuarias, INIA Carillanca, km 10 camino Cajón-Vilcún s/n, Temuco P.O. Box 929, Chile
Laura Lavanderos
Carrera de Agronomía, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile
Javiera Nahuelcura
Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile
Antonieta Ruiz
Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile
Álvaro López-García
Instituto Interuniversitario de Investigación del Sistema Tierra en Andalucía (IISTA), Universidad de Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
Alex Seguel
Departamento de Ciencias Agronómicas y Recursos Naturales, Facultad de Ciencias Agropecuarias y Medioambiente, Universidad de La Frontera, P.O. Box 54-D, Temuco 4811230, Chile
Reducing phosphate fertilizer inputs while increasing food nutritional quality has been posited as a major challenge to decrease human undernourishment and ensure food security. In this context, quinoa has emerged as a promising crop due to its ability to tolerate different stress conditions and grow in marginal soils with low nutrient content, in addition to the exceptional nutritional quality of its grains. However, there is scarce information about the phosphorus acquisition capacity of quinoa roots. This work aimed to provide new insights into P acquisition and functional root traits, such as root biomass, rhizosphere pH, carboxylate exudation, and acid phosphatase activity of thirty quinoa genotypes grown under P limiting conditions (7 mg P kg−1). Significant genotypic variation was observed among genotypes, with average P accumulation ranging from 1.2 to 11.8 mg. The shoot biomass production varied more than 14 times among genotypes and was correlated with the P accumulation on shoots (r = 0.91). Despite showing high variability in root traits, only root biomass production highly correlated with P acquisition (r = 0.77), suggesting that root growth/morphology rather than the measured biochemical activity possesses a critical role in the P nutrition of quinoa.