Beilstein Journal of Nanotechnology (Jun 2024)

Elastic modulus of β-Ga2O3 nanowires measured by resonance and three-point bending techniques

  • Annamarija Trausa,
  • Sven Oras,
  • Sergei Vlassov,
  • Mikk Antsov,
  • Tauno Tiirats,
  • Andreas Kyritsakis,
  • Boris Polyakov,
  • Edgars Butanovs

DOI
https://doi.org/10.3762/bjnano.15.58
Journal volume & issue
Vol. 15, no. 1
pp. 704 – 712

Abstract

Read online

Due to the recent interest in ultrawide bandgap β-Ga2O3 thin films and nanostructures for various electronics and UV device applications, it is important to understand the mechanical properties of Ga2O3 nanowires (NWs). In this work, we investigated the elastic modulus of individual β-Ga2O3 NWs using two distinct techniques – in-situ scanning electron microscopy resonance and three-point bending in atomic force microscopy. The structural and morphological properties of the synthesised NWs were investigated using X-ray diffraction, transmission and scanning electron microscopies. The resonance tests yielded the mean elastic modulus of 34.5 GPa, while 75.8 GPa mean value was obtained via three-point bending. The measured elastic moduli values indicate the need for finely controllable β-Ga2O3 NW synthesis methods and detailed post-examination of their mechanical properties before considering their application in future nanoscale devices.

Keywords