Advanced Sensor Research (Apr 2024)

Can Electrochemical Aptasensors Achieve the Commercial Success of Glucose Biosensors?

  • Sina Ardalan,
  • Anna Ignaszak

DOI
https://doi.org/10.1002/adsr.202300132
Journal volume & issue
Vol. 3, no. 4
pp. n/a – n/a

Abstract

Read online

Abstract Enzymes and antibodies are widely available biorecognition elements in bioanalytical tools such as personal glucose monitoring (PGM) devices and lateral flow assays (LFA). Meanwhile, electrochemical aptamer‐based (EAB) sensors are promising affinity‐based bioanalytical tools with potential advantages over such conventional bioassays. However, several critical factors affect the stability of EAB sensors, pivotal for their commercialization including 1) electrode defects due to surface treatment methods, 2) hampering effects of redox molecules, 3) electrical potential‐induced aptamer detachment, 4) thermal‐induced monolayer solubilization, 5) biochemical/enzymatic degradation, 6) biofouling, and 7) inadequate statistical design and analysis in EAB sensor fabrication. Herein, antidotes for the obstacles are proposed by applying novel surface treatment methods, adapting redox molecule, tuning electrochemical tests, tweaking backfilling agents, and anti‐bio‐fouling coatings. Nonetheless, the obstacles are a driving force to clear pathways toward bringing EAB sensors to the market for therapeutic drug and metabolite monitoring, point of care sensors, macromolecule detection, and pathogen diagnostics.

Keywords