Sensors (Jul 2020)
A QoE-Aware Energy Supply Scheme over a FiWi Access Network in the 5G Era
Abstract
Integrated fiber-wireless (FiWi) should be regarded as a promising access network architecture in future 5G networks, and beyond; this due to its seamless combination of flexibility, ubiquity, mobility of the wireless mesh network (WMN) frontend with a large capacity, high bandwidth, strong robustness in time, and a wavelength-division multiplexed passive optical network (TWDM-PON) backhaul. However, the key issue in both traditional human-to-human (H2H) traffic and emerging Tactile Internet is the energy conservation network operation. Therefore, a power-saving method should be instrumental in the wireless retransmission-enabled architecture design. Toward this end, this paper firstly proposes a novel energy-supply paradigm of the FiWi converged network infrastructure, i.e., the emerging power over fiber (PoF) technology instead of an external power supply. Then, the existing time-division multiplexing access (TDMA) scheme and PoF technology are leveraged to carry out joint dynamic bandwidth allocation (DBA) and provide enough power for the sleep schedule in each integrated optical network unit mesh portal point (ONU-MPP) branch. Additionally, the correlation between the transmitted optical power of the optical line terminal (OLT) and the quality of experience (QoE) guarantee caused by multiple hops in the wireless frontend is taken into consideration in detail. The research results prove that the envisioned paradigm can significantly reduce the energy consumption of the whole FiWi system while satisfying the average delay constraints, thus providing enough survivability for multimode optical fiber.
Keywords