Applied Sciences (Sep 2018)
Illuminance Reconstruction of Road Lighting in Urban Areas for Efficient and Healthy Lighting Performance Evaluation
Abstract
Big lighting data are required for evaluation of lighting performance and impacts on human beings, environment, and ecology for smart urban lighting. However, traditional approaches of measuring road lighting cannot achieve this aim. We propose a rule-of-thumb model approach based on some feature points to reconstruct road lighting in urban areas. We validated the reconstructed illuminance with both software simulated and real road lighting scenes, and the average error is between 6 and 19%. This precision is acceptable in practical applications. Using this approach, we reconstructed the illuminance of three real road lighting environments in a block and further estimated the mesopic luminance and melanopic illuminance performance. In the future, by virtue of Geographic Information System technology, the approach may provide big lighting data for evaluation and analysis, and help build smarter urban lighting.
Keywords