High density iridium synergistic sites boosting CO-tolerate performance for PEMFC anode
Tongtong Yang,
Xiaolong Yang,
Nanxing Gao,
Meijian Tang,
Xian Wang,
Changpeng Liu,
Wei Xing,
Junjie Ge
Affiliations
Tongtong Yang
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Xiaolong Yang
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Nanxing Gao
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Meijian Tang
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Xian Wang
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Corresponding authors.
Changpeng Liu
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Wei Xing
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China
Junjie Ge
State Key Laboratory of Electroanalytic Chemistry, Jilin Province Key Laboratory of Low Carbon Chemistry Power, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, China; School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, China; Corresponding authors.
The usage of cheap crude H2 in proton-exchange membrane fuel cells (PEMFCs) is still unrealistic to date, due to the suffering of the current Pt based nano-catalysts from impurities such as CO in anode. Recently, synergistic active sites between single atom (SA) and nanoparticle (NP) have been found to be promising for overcoming the poisoning problem. However, lengthening the nanoparticle-single atom (SA–NP) interface, i.e., constructing high density synergistic active sites, remains highly challenging. Herein, we present a new strategy based on molecular fusion strategy to create abundant SA–NP interfaces, with high density SA–NP interfaces created on a two dimensional nitrogen doped carbon nanosheets (Ir-SACs&NPs/NC). Owing to the abundance of SA–NP interface sites, the catalyst was empowered with a high tolerance towards up to 1000 ppm CO in H2 feed. These findings provide guidelines for the design and construction of active and anti-poisoning catalysts for PEMFC anode.