Humanities & Social Sciences Communications (Jul 2021)

Predicting effectiveness of countermeasures during the COVID-19 outbreak in South Africa using agent-based simulation

  • Moritz Kersting,
  • Andreas Bossert,
  • Leif Sörensen,
  • Benjamin Wacker,
  • Jan Chr. Schlüter

DOI
https://doi.org/10.1057/s41599-021-00830-w
Journal volume & issue
Vol. 8, no. 1
pp. 1 – 15

Abstract

Read online

Abstract COVID-19 has spread rapidly around the globe. While there has been a slow down of the spread in some countries, e.g., in China, the African continent is still at the beginning of a potentially wide spread of the virus. Owing to its economic strength and imbalances, South Africa is of particular relevance with regard to the drastic measures to prevent the spread of this novel coronavirus. In March 2020, South Africa imposed one of the most severe lockdowns worldwide and subsequently faced the number of infections slowing down considerably. In May 2020, this lockdown was partially relaxed and further easing of restrictions was envisaged. In July and August 2020, daily new infections peaked and declined subsequently. Lockdown measures were further relaxed. This study aims to assess the recent and upcoming measures from an epidemiological perspective. Agent-based epidemic simulations are used to depict the effects of policy measures on the further course of this epidemic. The results indicate that measures that are either lifted too early or are too lenient have no sufficient mitigating effects on infection rates. Consequently, continuous exponential infection growth rates or a second significant peak of infected people occur. These outcomes are likely to cause higher mortality rates once healthcare capacities are occupied and no longer capable to treat all severely and critically infected COVID-19 patients. In contrast, strict measures appear to be a suitable way to contain the virus. The simulations imply that the initial lockdown of 27 March 2020 was probably sufficient to slow the growth in the number of infections, but relaxing countermeasures might allow for a second severe outbreak of COVID-19 in our investigated simulation region of Nelson Mandela Bay Municipality.