Iranian Journal of Parasitology (Mar 2013)
Plasmodium Falciparum: Adhesion Phenotype of Infected Erythrocytes Using Classical and Mini-Column Cytoadherence Techniques
Abstract
Background: Cytoadherence of Plasmodium falciparum- infected erythrocytes to host cells is an important trait for parasite survival and has a major role in pathology of malaria disease. Infections with P. falciparum usually consist of several subpopulations of parasites with different adhesive properties. This study aimed to compare relative sizes of various binding subpopulations of different P. falciparum isolates. It also investigated the adhesive phenotype of a laboratory P. falciparum line, A4, using different binding techniques.Methods: Seven different P. falciparum isolates (ITG, A4, 3D7 and four field isolates) were cultivated to late trophozoite and schizont and then cytoadherence to cell differentiation 36 (CD36), intercellular cell adhesion molecule-1 (ICAM-1), and vascular cell adhesion molecule (V-CAM) and E-selectin were examined. The relative binding sizes of parasite subpopulations to human receptors were measured by mini-column cytoadherence method. The adhesion phenotype of P. falciparum-A4 line was evaluated by in vitro static, flow-based and mini-column binding assays.Results: The relative binding size of ITG, A4 and 3D7 clones to a column made with CHO/ICAM-1 was 68%, 54% and 0%, respectively. The relative binding sizes of these lines to CHO/CD36 were 59.7%, 28.7% and 0%, respectively. Different field isolates had variable sizes of respective CD36 and ICAM1-binding subpopulations. A4 line had five different subpopulations each with different binding sizes.Conclusion: This study provided further evidence that P. falciparum isolates have different binding subpopulations sizes in an infection. Furthermore, measurement of ICAM-1 or CD36 binding subpopulations may practical to study the cytoadherence phenotypes of P. falciparum field isolates at the molecular level.