Energy Reports (Dec 2023)

Transmission line fault detection and classification based on SA-MobileNetV3

  • Yanhui Xi,
  • Weijie Zhang,
  • Feng Zhou,
  • Xin Tang,
  • Zewen Li,
  • Xiangjun Zeng,
  • Pinghua Zhang

Journal volume & issue
Vol. 9
pp. 955 – 968

Abstract

Read online

Accurate fault detection and classification help to analyze fault causes and quickly restore faulty phases. Deep learning can automatically extract fault features and identify fault types from the original three-phase voltage and current signals. However, this still imposes challenges such as recognition accuracy and computational complexity. More importantly, high level fault features cannot be extracted in the one-dimensional time series. This paper presents a robust fault classification method based on SA-MobileNetV3 for transmission systems. Considering that the SE (Squeeze-and-Excitation) attention module cannot aggregate the spatial dimension information on the channel, SA (shuffle attention) module is introduced into MobileNetV3, which can effectively fuse the importance of pixels in different channels and in different locations at the same channel. Also, transforming the time series three-phase voltage and current signals into two-dimensional images based on CWT (continuous wavelet transform) makes the proposed method be similar to image recognition, which can mine high level fault features and classify the faults visually. To verify the effectiveness of the method, a 735kV transmission line model is built for data generation through Simulink. Various kinds of fault conditions and factors are considered to verify the adaptability and generalizability. Simulation results show that the method can quickly and accurately identify 11 types of faults, and the accuracy rate is as high as 99.90%. A comparison between the proposed method and other existing techniques shows the superiority of the proposed SA- MobileNetV3, and better anti-noise performance makes it more suitable for real fault signals taken on-site.

Keywords