Journal of Ovarian Research (Feb 2024)

Bushenhuoluo Decoction improves polycystic ovary syndrome by regulating exosomal miR-30a-5p/ SOCS3/mTOR/NLRP3 signaling-mediated autophagy and pyroptosis

  • Qun Huang,
  • Yuanbin Li,
  • Zhuang Chen,
  • Huiping Ou,
  • Yanjiao Tan,
  • Hui Lin

DOI
https://doi.org/10.1186/s13048-024-01355-x
Journal volume & issue
Vol. 17, no. 1
pp. 1 – 17

Abstract

Read online

Abstract Background Polycystic ovary syndrome (PCOS) is a frequent and complicated endocrine disease that remains a major reason for infertility. Bushenhuoluo Decotion (BSHLD) has been validated to exhibit curative effects on PCOS. This study was aimed to explore the potential mechanism underlying the therapeutic action of BSHLD. Methods PCOS rat model was induced by dehydroepiandrosterone (DHEA). Serum hormone and cytokines levels and ovarian pathological alterations were measured to assess ovarian function. Exosomes (Exos) were identified by Transmission electron microscopy and Nanoparticle Tracking Analysis. RT-qPCR, Western blotting, immunohistochemical staining, and immunofluorescence staining were performed to detect molecule expressions. Proliferation and pyroptosis of granulosa cells (GCs) were evaluated by CCK-8 and flow cytometry, respectively. The binding relationship between miR-30a-5p and suppressor of cytokine signaling 3 (SOCS3) was verified by dual luciferase reporter and RIP assays. Results BSHLD treatment improved serum hormone abnormality, insulin sensitivity, and ovarian morphologic changes of PCOS rats. Moreover, BSHLD treatment restrained the excessive autophagy and pyroptosis in ovarian tissues of PCOS rats. Moreover, BSHLD reduced the expression of miR-30a-5p in serum, serum-derived Exos, and ovarian tissues, thus inhibiting autophagy and NLRP3-mediated pyroptosis in GCs. Mechanistically, SOCS3 was proved as a target of miR-30a-5p and could activate mTOR/P70S6K pathway to repress autophagy. The inhibitory effect of miR-30a-5p deficiency on autophagy and pyroptosis of GCs was attenuated by rapamycin. Conclusion Collectively, BSHLD suppressed autophagy and pyroptosis to improve POCS by regulating exosomal miR-30a-5p/SOCS3/mTOR signaling.

Keywords