Advances in Nonlinear Analysis (Feb 2013)
A class of degenerate elliptic eigenvalue problems
Abstract
We consider a general class of eigenvalue problems where the leading elliptic term corresponds to a convex homogeneous energy function that is not necessarily differentiable. We derive a strong maximum principle and show uniqueness of the first eigenfunction. Moreover we prove the existence of a sequence of eigensolutions by using a critical point theory in metric spaces. Our results extend the eigenvalue problem of the p-Laplace operator to a much more general setting.
Keywords