Bioengineered (Dec 2021)

Engineered mRNA-expressed bispecific antibody prevent intestinal cancer via lipid nanoparticle delivery

  • Lipei Wu,
  • Weiwei Wang,
  • Jiale Tian,
  • Chunrun Qi,
  • Zhengxin Cai,
  • Wenhui Yan,
  • Shihai Xuan,
  • Anquan Shang

DOI
https://doi.org/10.1080/21655979.2021.2003666
Journal volume & issue
Vol. 12, no. 2
pp. 12383 – 12393

Abstract

Read online

The potential of antibodies, especially for the bispecific antibodies, are limited by high cost and complex technical process of development and manufacturing. A cost-effective and rapid platform for the endogenous antibodies expression via using the in vitro transcription (IVT) technique to produce nucleoside-modified mRNA and then encapsulated into lipid nanoparticle (LNP) may turn the body to a manufactory. Coinhibitory pathway of programmed death ligand 1 (PD-L1) and programmed cell death protein 1 receptor (PD-1) could suppress the T-cell mediated immunity. We hypothesized that the coblocking of PD-L1 and PD-1 via bispecific antibodies may achieve more potential antitumor efficacies compare with the monospecific ones. Here, we described the application of mRNA to encode a bispecific antibody with ablated Fc immune effector functions that targets both human PD-L1 and PD-1, termed XA-1, which was further assessed the in vitro functional activities and in vivo antitumor efficacies. The in vitro mRNA-encoded XA-1 held comparable abilities to fully block the PD-1/PD-L1 pathway as well as to enhance functional T cell activation compared to XA-1 protein from CHO cell source. Pharmacokinetic tests showed enhanced area under curve (AUC) of mRNA-encoded XA-1 compared with XA-1 at same dose. Chronic treatment of LNP-encapsulated XA-1 mRNA in the mouse tumor models which were reconstituted with human immune cells effectively induced promising antitumor efficacies compared to XA-1 protein. Current results collectively demonstrated that LNP-encapsulated mRNA represents the viable delivery platform for treating cancer and hold potential to be applied in the treatment of many diseases. Abbreviations: IVT: in vitro transcription; LNP: lipid nanoparticle; hPD-1: human PD-1; hPD-L1: human PD-L1; ITS-G: Insulin-Transferrin-Selenium; Pen/Strep: penicillin-streptomycin; FBS: fetal bovine serum; TGI: tumor growth inhibition; IE1: cytomegalovirus immediate early 1; SP: signal peptide; hIgLC: human immunoglobulin kappa light chain; hIgHC: human IgG1 heavy chain; AUC: area under the curve; Cl: serum clearance; Vss: steady-state distributed volume; MLR: mixed lymphocyte reaction.

Keywords