Micromachines (Feb 2020)

Free-Standing PVDF/Reduced Graphene Oxide Film for All-Solid-State Flexible Supercapacitors towards Self-Powered Systems

  • Parthiban Pazhamalai,
  • Vimal Kumar Mariappan,
  • Surjit Sahoo,
  • Woo Young Kim,
  • Young Sun Mok,
  • Sang-Jae Kim

DOI
https://doi.org/10.3390/mi11020198
Journal volume & issue
Vol. 11, no. 2
p. 198

Abstract

Read online

The development of polymer-based devices has attracted much attention due to their miniaturization, flexibility, lightweight and sustainable power sources with high efficiency in the field of wearable/portable electronics, and energy system. In this work, we proposed a polyvinylidene fluoride (PVDF)-based composite matrix for both energy harvesting and energy storage applications. The physicochemical characterizations, such as X-ray diffraction, laser Raman, and field-emission scanning electron microscopy (FE-SEM) analyses, were performed for the electrospun PVDF/sodium niobate and PVDF/reduced graphene oxide composite film. The electrospun PVDF/sodium niobate nanofibrous mat has been utilized for the energy harvester which shows an open circuit voltage of 40 V (peak to peak) at an applied compressive force of 40 N. The PVDF/reduced graphene oxide composite film acts as the electrode for the symmetric supercapacitor (SSC) device fabrication and investigated for their supercapacitive properties. Finally, the self-charging system has been assembled using PVDF/sodium niobate (energy harvester), and PVDF/reduced graphene oxide SSC (energy storage) and the self-charging capability is investigated. The proposed self-charging system can create a pathway for the all-polymer based composite high-performance self-charging system.

Keywords