Remote Sensing (Apr 2020)

Cluster Low-Streams Regression Method for Hyperspectral Radiative Transfer Computations: Cases of O<sub>2</sub> A- and CO<sub>2</sub> Bands

  • Ana del Águila,
  • Dmitry S. Efremenko,
  • Víctor Molina García,
  • Michael Yu. Kataev

DOI
https://doi.org/10.3390/rs12081250
Journal volume & issue
Vol. 12, no. 8
p. 1250

Abstract

Read online

Current atmospheric composition sensors provide a large amount of high spectral resolution data. The accurate processing of this data employs time-consuming line-by-line (LBL) radiative transfer models (RTMs). In this paper, we describe a method to accelerate hyperspectral radiative transfer models based on the clustering of the spectral radiances computed with a low-stream RTM and the regression analysis performed for the low-stream and multi-stream RTMs within each cluster. This approach, which we refer to as the Cluster Low-Streams Regression (CLSR) method, is applied for computing the radiance spectra in the O2 A-band at 760 nm and the CO2 band at 1610 nm for five atmospheric scenarios. The CLSR method is also compared with the principal component analysis (PCA)-based RTM, showing an improvement in terms of accuracy and computational performance over PCA-based RTMs. As low-stream models, the two-stream and the single-scattering RTMs are considered. We show that the error of this approach is modulated by the optical thickness of the atmosphere. Nevertheless, the CLSR method provides a performance enhancement of almost two orders of magnitude compared to the LBL model, while the error of the technique is below 0.1% for both bands.

Keywords