Translational Oncology (Jul 2024)

Diagnostic and predictive significance of the ferroptosis-related gene TXNIP in lung adenocarcinoma stem cells based on multi-omics

  • Yuanyuan Zheng,
  • Wei Yang,
  • Weixuan Wu,
  • Feng Jin,
  • Dehua Lu,
  • Jing Gao,
  • Shubin Wang

Journal volume & issue
Vol. 45
p. 101926

Abstract

Read online

Background: Lung cancer stands as the foremost cause of cancer-related fatalities globally. The presence of cancer stem cells (CSCs) poses a challenge, rendering current targeted tumor therapies ineffective. This study endeavors to investigate a novel therapeutic approach focusing on ferroptosis and delves into the expression of ferroptosis-related genes within lung CSCs. Methods: We systematically examined RNA-seq datasets derived from lung tumor cells (LTCs) and lung cancer stem cells (LSCs), as previously investigated in our research. Our focus was on analyzing differentially expressed genes (DEGs) related to ferroptosis. Utilizing the Kyoto Encyclopedia of Genes and Genomes (KEGG) and Gene Ontology (GO), we conducted functional analysis of these ferroptosis-related DEGs. Additionally, we employed protein‒protein interaction networks to identify hub genes. LC‒MS/MS analysis of LTCs and LSCs was conducted to pinpoint the crucial ferroptosis-related gene–thioredoxin-interacting protein (TXNIP).Further, we delved into the immune cell infiltration landscape of LTCs and LSCs, examining the correlation between TXNIP and lung adenocarcinoma (LUAD) using data from The Cancer Genome Atlas (TCGA) database. To complement these findings, we measured the expression levels of TXNIP, glutathione peroxidase 4(GPX4), nuclear receptor coactivator 4 (NCOA4) in LUAD tissues through immunohistochemistry (IHC) staining. Results: A total of 651 DEGs were identified, with 17 of them being ferroptosis-related DEGs. These seventeen genes were categorized into four groups: driver genes, suppressor genes, unclassified genes, and inducer genes. Enrichment analysis revealed significant associations with oxidative stress, cell differentiation, tissue development, and cell death processes. The RNA-seq analysis demonstrated consistent gene expression patterns with protein expression, as evidenced by mass spectrometry analysis. Among the identified genes, SFN and TXNIP were singled out as hub genes, with TXNIP showing particularly noteworthy expression. The expression of the ferroptosis-related gene TXNIP exhibited correlations with the presence of an immunosuppressive microenvironment, TNM stages, and the degree of histological differentiation.Also, the ferroptosis-markers GPX4 and NCOA4 displayed correlations with LUAD. This comprehensive analysis underscores the significance of TXNIP in the context of ferroptosis-related processes and their potential implications in cancer development and progression. Conclusion: The investigation conducted in this study systematically delved into the role of the ferroptosis-related gene TXNIP in Lung CSCs. The identification of TXNIP as a potentially valuable biomarker in this context could have significant implications for refining prognostic assessments and optimizing therapeutic strategies for advanced lung cancer.

Keywords