Heliyon (Aug 2024)
Characterization of stability and support force of loess caves in northwest China
Abstract
Numerous manually excavated loess caves are present within a cultural relic protection zone in the northwestern region of China. The collapse of these caves frequently leads to the cracking, tilting, and even collapse of ancient buildings above, posing a severe threat to the safety of cultural architectural relics. Investigating the stability and characteristics of deformation and failure in loess caves is essential for effectively reinforcing and protecting cultural relics. A two-dimensional model of a loess underground cavern was developed using OptumG2. The stability and modes of deformation and failure in the underground cavern were analyzed through the augmentation of soil gravity and the strength reduction method. This analysis determined the cavern's safety factor, force, deformation and damage mode, and the plastic zone's progression. Numerical simulations analyzed the force characteristics of the support structure under different stress release ratios. The findings revealed that, with the implementation of an anchor rod concrete lining support scheme, the most probable failure mode is a shear failure, initiating at the arch foot. The ground's stress release rate does not influence the safety factor of the cavern but rather the material, design, and strength of the support structure. However, the magnitude of the internal forces acting on the supporting structure by the soil in the cavern is related to the degree of ground stress release. When applied during significant stress release, support structures may experience reduced internal forces, albeit with more substantial stratum displacement; opting for an appropriate stress release when applying support structures is crucial for achieving optimal stratum displacement and lining internal forces.