<i>GmHs1-1</i> and <i>GmqHS1</i> Simultaneously Contribute to the Domestication of Soybean Hard-Seededness
Huifang Yan,
Daicai Tian,
Qian Zhang,
Jiangqi Wen,
Zeng-Yu Wang,
Maofeng Chai
Affiliations
Huifang Yan
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Daicai Tian
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Qian Zhang
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Jiangqi Wen
Institute for Agricultural Biosciences, Oklahoma State University, Ardmore, OK 73401, USA
Zeng-Yu Wang
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Maofeng Chai
Key Laboratory of National Forestry and Grassland Administration on Grassland Resources and Ecology in the Yellow River Delta, College of Grassland Science, Qingdao Agricultural University, Qingdao 266109, China
Seed physical dormancy (hard-seededness) is an interesting ecological phenomenon and important agronomic trait. The loss of seed coat impermeability/hard-seededness is a key target trait during the domestication of leguminous crops which allows seeds to germinate rapidly and uniformly. In this study, we examined the mutation of quantitative trait locus (QTL) genes, GmHs1-1 and GmqHS1, in 18 wild soybean (G. soja) and 23 cultivated soybean (G. max) accessions. The sequencing results indicate that a G-to-T substitution in GmqHS1 and a C-to-T substitution in GmHs1-1 occurred in all 23 cultivated soybean accessions but not in any of the 18 wild soybean accessions. The mutations in the two genes led to increased seed coat permeability in cultivated soybean. Therefore, we provide evidence that two genes, GmHs1-1 and GmqHS1, simultaneously contribute to the domestication of hard-seededness in soybeans. This finding is of great significance for genetic analysis and improved utilization of the soybean hard-seededness trait.