Microplastics and nanoplastics: Exposure and toxicological effects require important analysis considerations
Emmanouil D. Tsochatzis,
Helen Gika,
Georgios Theodoridis,
Niki Maragou,
Nikolaos Thomaidis,
Milena Corredig
Affiliations
Emmanouil D. Tsochatzis
Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark; FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece
Helen Gika
FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; School of Medicine, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
Georgios Theodoridis
FoodOmicsGR Research Infrastructure, AUTh Node, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Biomic AUTh, Center for Interdisciplinary Research and Innovation (CIRI-AUTH), Balkan Center B1.4, 10th Km Thessaloniki-Thermi Rd, P.O. Box 8318, GR 57001, Thessaloniki, Greece; Department of Chemistry, Aristotle University of Thessaloniki, 54124, Thessaloniki, Greece
Niki Maragou
Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
Nikolaos Thomaidis
Laboratory of Analytical Chemistry, Department of Chemistry, National and Kapodistrian University of Athens, 15771, Athens, Greece
Milena Corredig
Department of Food Science, CiFOOD, Centre for Innovative Foods, Agro Food Park 48, Aarhus N, 8200, Denmark; Corresponding author.
Microplastics (MPs) and nanoplastics (NPs) pervade both the environment and the food chain, originating from the degradation of plastic materials from various sources. Their ubiquitous presence raises concerns for ecosystem safety, as well as the health of animals and humans. While evidence suggests their infiltration into mammalian and human tissues and their association with several diseases, the precise toxicological effects remain elusive and require further investigation. MPs and NPs sample preparation and analytical methods are quite scattered without harmonized strategies to exist at the moment.A significant challenge lies in the limited availability of methods for the chemical characterization and quantification of these contaminants. MPs and NPs can undergo further degradation, driven by abiotic or biotic factors, resulting in the formation of cyclic or linear oligomers. These oligomers can serve as indicative markers for the presence or exposure to MPs and NPs. Moreover, recent finding concerning the aggregation of oligomers to form NPs, makes their analysis as markers very important.Recent advancements have led to the development of sensitive and robust analytical methods for identifying and (semi)quantifying these oligomers in environmental, food, and biological samples. These methods offer a valuable complementary approach for determining the presence of MPs and NPs and assessing their risk to human health and the environment.