Nature Communications (May 2022)

E(3)-equivariant graph neural networks for data-efficient and accurate interatomic potentials

  • Simon Batzner,
  • Albert Musaelian,
  • Lixin Sun,
  • Mario Geiger,
  • Jonathan P. Mailoa,
  • Mordechai Kornbluth,
  • Nicola Molinari,
  • Tess E. Smidt,
  • Boris Kozinsky

DOI
https://doi.org/10.1038/s41467-022-29939-5
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 11

Abstract

Read online

An E(3)-equivariant deep learning interatomic potential is introduced for accelerating molecular dynamics simulations. The method obtains state-of-the-art accuracy, can faithfully describe dynamics of complex systems with remarkable sample efficiency.