Analysis of Arbitrary Reflector Antennas Applying the Geometrical Theory of Diffraction Together with the Master Points Technique

International Journal of Antennas and Propagation. 2013;2013 DOI 10.1155/2013/415069

 

Journal Homepage

Journal Title: International Journal of Antennas and Propagation

ISSN: 1687-5869 (Print); 1687-5877 (Online)

Publisher: Hindawi Publishing Corporation

LCC Subject Category: Technology: Electrical engineering. Electronics. Nuclear engineering

Country of publisher: Egypt

Language of fulltext: English

Full-text formats available: PDF, HTML, ePUB, XML

 

AUTHORS

María Jesús Algar (Departamento de Ciencias de la Computación, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain)
Jose-Ramón Almagro (Departamento de Ciencias de la Computación, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain)
Javier Moreno (Departamento de Ciencias de la Computación, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain)
Lorena Lozano (Departamento de Ciencias de la Computación, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain)
Felipe Cátedra (Departamento de Ciencias de la Computación, Universidad de Alcalá, Alcalá de Henares, 28871 Madrid, Spain)

EDITORIAL INFORMATION

Blind peer review

Editorial Board

Instructions for authors

Time From Submission to Publication: 24 weeks

 

Abstract | Full Text

An efficient approach for the analysis of surface conformed reflector antennas fed arbitrarily is presented. The near field in a large number of sampling points in the aperture of the reflector is obtained applying the Geometrical Theory of Diffraction (GTD). A new technique named Master Points has been developed to reduce the complexity of the ray-tracing computations. The combination of both GTD and Master Points reduces the time requirements of this kind of analysis. To validate the new approach, several reflectors and the effects on the radiation pattern caused by shifting the feed and introducing different obstacles have been considered concerning both simple and complex geometries. The results of these analyses have been compared with the Method of Moments (MoM) results.