Materials for Renewable and Sustainable Energy (Jan 2025)

Fe-doped SnO2 nanoparticles: enhancing the photocatalytic hydrogen efficiency, Rhodamine-B dye degradation and visible light absorption

  • Aashish K Moses,
  • Srinath Ranjan Tripathy,
  • Saroj Sundar Baral

DOI
https://doi.org/10.1007/s40243-024-00288-1
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 13

Abstract

Read online

Abstract The existing energy-wastewater nexus may be resolved using metal oxide semiconductor photocatalysts in photocatalytic hydrogen production and pollutant degradation, which is a clean and sustainable process. SnO2 is one such well-researched and proven photocatalyst that is now in use, although it only works with ultraviolet light, which only makes up 4% of the total solar energy received. The present research aims to use iron as a dopant to make SnO2 active under visible light, enhancing reactions like water splitting and dye degradation. The sol-gel method was used to synthesize the photocatalysts. XRD, BET, UV diffuse reflectance spectra, PL spectra, XPS, and SEM micrographs were used to characterize the synthesized photocatalysts. For 7.5 wt% Fe-doped SnO2, a remarkable hydrogen generation rate of 18.81 µmol/hr under sunlight was achieved, nearly three times that of pure SnO2 (5.71 µmol/h). The nanocomposites display excellent photoreactivity towards RhB dye degradation with an optimal concentration of 7.5 wt% Fe-doped SnO2. This optimal composite photocatalyst removes 93% of RhB dye on 0.1 g/L photocatalysts in only 60 min under sunlight. Pristine SnO2 removes 36% of the dye under similar reaction conditions. The photoluminescence spectra of Fe-doped SnO2 had lower peak locations than the pristine SnO2, indicating a decreased rate of charge recombination and increased life duration of the active species. As a result, hydrogen generation rates and dye degradation efficiencies have increased significantly. The photocatalyst’s recyclability study revealed that the photocatalysts can be used efficiently for four cycles without significant reduction in the yield.

Keywords