Scientific Reports (Aug 2017)

Ergot alkaloids contribute to virulence in an insect model of invasive aspergillosis

  • Daniel G. Panaccione,
  • Stephanie L. Arnold

DOI
https://doi.org/10.1038/s41598-017-09107-2
Journal volume & issue
Vol. 7, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Neosartorya fumigata (Aspergillus fumigatus) is the most common cause of invasive aspergillosis, a frequently fatal lung disease primarily affecting immunocompromised individuals. This opportunistic fungal pathogen produces several classes of specialised metabolites including products of a branch of the ergot alkaloid pathway called fumigaclavines. The biosynthesis of the N. fumigata ergot alkaloids and their relation to those produced by alternate pathway branches in fungi from the plant-inhabiting Clavicipitaceae have been well-characterised, but the potential role of these alkaloids in animal pathogenesis has not been studied extensively. We investigated the contribution of ergot alkaloids to virulence of N. fumigata by measuring mortality in the model insect Galleria mellonella. Larvae were injected with conidia (asexual spores) of two different wild-type strains of N. fumigata and three different ergot alkaloid mutants derived by previous gene knockouts and differing in ergot alkaloid profiles. Elimination of all ergot alkaloids significantly reduced virulence of N. fumigata in G. mellonella (P < 0.0001). Mutants accumulating intermediates but not the pathway end product fumigaclavine C also were less virulent than the wild type (P < 0.0003). The data indicate that ergot alkaloids contribute to virulence of N. fumigata in this insect model and that fumigaclavine C is important for full virulence.