Frontiers in Plant Science (Feb 2023)

Identification of QTN-by-environment interactions for yield related traits in maize under multiple abiotic stresses

  • Yang-Jun Wen,
  • Yang-Jun Wen,
  • Xinyi Wu,
  • Shengmeng Wang,
  • Le Han,
  • Bolin Shen,
  • Yuan Wang,
  • Jin Zhang,
  • Jin Zhang

DOI
https://doi.org/10.3389/fpls.2023.1050313
Journal volume & issue
Vol. 14

Abstract

Read online

IntroductionQuantitative trait nucleotide (QTN)-by-environment interactions (QEIs) play an increasingly essential role in the genetic dissection of complex traits in crops as global climate change accelerates. The abiotic stresses, such as drought and heat, are the major constraints on maize yields. Multi-environment joint analysis can improve statistical power in QTN and QEI detection, and further help us to understand the genetic basis and provide implications for maize improvement.MethodsIn this study, 3VmrMLM was applied to identify QTNs and QEIs for three yield-related traits (grain yield, anthesis date, and anthesis-silking interval) of 300 tropical and subtropical maize inbred lines with 332,641 SNPs under well-watered and drought and heat stresses.ResultsAmong the total 321 genes around 76 QTNs and 73 QEIs identified in this study, 34 known genes were reported in previous maize studies to be truly associated with these traits, such as ereb53 (GRMZM2G141638) and thx12 (GRMZM2G016649) associated with drought stress tolerance, and hsftf27 (GRMZM2G025685) and myb60 (GRMZM2G312419) associated with heat stress. In addition, among 127 homologs in Arabidopsis out of 287 unreported genes, 46 and 47 were found to be significantly and differentially expressed under drought vs well-watered treatments, and high vs. normal temperature treatments, respectively. Using functional enrichment analysis, 37 of these differentially expressed genes were involved in various biological processes. Tissue-specific expression and haplotype difference analysis further revealed 24 candidate genes with significantly phenotypic differences across gene haplotypes under different environments, of which the candidate genes GRMZM2G064159, GRMZM2G146192, and GRMZM2G114789 around QEIs may have gene-by-environment interactions for maize yield.DiscussionAll these findings may provide new insights for breeding in maize for yield-related traits adapted to abiotic stresses.

Keywords