Inorganics (Mar 2023)

Photoelectrochemical Performance of a CuBi<sub>2</sub>O<sub>4</sub> Photocathode with H<sub>2</sub>O<sub>2</sub> as a Scavenger

  • Zohreh Masoumi,
  • Mahdi Tayebi,
  • S. Ahmad Masoumi Lari,
  • Bongkuk Seo,
  • Choong-Sun Lim,
  • Hyeon-Gook Kim,
  • Daeseung Kyung,
  • Meysam Tayebi

DOI
https://doi.org/10.3390/inorganics11040147
Journal volume & issue
Vol. 11, no. 4
p. 147

Abstract

Read online

Photoelectrochemical (PEC) water splitting is an eco-friendly method for producing clean and sustainable hydrogen fuels. Compared with the fabrication of solar hydrogen using n-type metal oxide semiconductor photoanodes, that of solar hydrogen using p-type metal oxide semiconductor photocathodes has not been researched as thoroughly. Therefore, this study investigated the effect of drop casting time on the PEC performance of a prepared CuBi2O4 photocathode. XPS, HRTEM, UV-DRS, Raman spectroscopy, XRD, and SEM analyses were used to characterize the prepared CuBi2O4 photocathode. Owing to the high charge separation and transfer, the photocurrent density of the CuBi2O4 photocathode was ~0.6 mA cm−2 at 0.3 V vs. RHE. The nanoporous CuBi2O4 photocathode exhibited a high photocurrent density of up to 1.2 mA cm−2 at 0.3 V vs. RHE with H2O2 as a sacrificial agent. Mott–Schottky and impedance measurements were also performed on the CuBi2O4 photocathode to estimate its acceptor density and charge-transfer resistance.

Keywords