Catalysts (Sep 2018)

A Facile Synthesis of Visible-Light Driven Rod-on-Rod like α-FeOOH/α-AgVO3 Nanocomposite as Greatly Enhanced Photocatalyst for Degradation of Rhodamine B

  • Meng Sun,
  • Raja Arumugam Senthil,
  • Junqing Pan,
  • Sedahmed Osman,
  • Abrar Khan

DOI
https://doi.org/10.3390/catal8090392
Journal volume & issue
Vol. 8, no. 9
p. 392

Abstract

Read online

In this work, we have synthesized the rod-on-rod–like α-FeOOH/α-AgVO3 nanocomposite photocatalysts with the different amounts of solvothermally synthesized α-FeOOH nanorods via a simple co-precipitation method. The as-synthesized photocatalysts were characterized by X-ray diffraction (XRD), Fourier-transform infrared (FT-IR) spectroscopy, UV−Visible diffuse reflectance spectroscopy, scanning electron microscopy (SEM), element mapping, high-resolution transmission electron microscopy (HR-TEM) and X-ray photoelectron spectroscopy (XPS) analysis. The observed SEM images show that both α-AgVO3 and α-FeOOH exhibits the rod-shaped morphology with nano size. Furthermore, the photocatalytic activities of the obtained photocatalysts were evaluated towards the degradation of Rhodamine B (RhB) under visible-light irradiation. It is demonstrated that the 3 mg α-FeOOH added to the α-FeOOH/α-AgVO3 nanocomposite exhibited an enhanced photocatalytic performance as compared with the pure α-AgVO3 and α-FeOOH. This significant improvement can be attributed to the increased photo-excited electron-hole pair separation efficiency, large portion of visible-light absorption ability and the reduced recombination of the electron-hole pair. The recycling test revealed that the optimized nanocomposite exhibited good photostability and reusability properties. In addition, the believable photodegradation mechanism of RhB using α-FeOOH/α-AgVO3 nanocomposite is proposed. Hence, the developed α-FeOOH/α-AgVO3 nanocomposite is a promising material for the degradation of organic pollutants in an aqueous environment.

Keywords