Frontiers in Immunology (Dec 2023)

Immune and oxidative stress disorder in ovulation-dysfunction women revealed by single-cell transcriptome

  • Lingbin Qi,
  • Yumei Li,
  • Lina Zhang,
  • Shuyue Li,
  • Xunyi Zhang,
  • Wanqiong Li,
  • Jiaying Qin,
  • Xian Chen,
  • Yazhong Ji,
  • Zhigang Xue,
  • Bo Lv

DOI
https://doi.org/10.3389/fimmu.2023.1297484
Journal volume & issue
Vol. 14

Abstract

Read online

IntroductionOvulation dysfunction is now a widespread cause of infertility around the world. Although the impact of immune cells in human reproduction has been widely investigated, systematic understanding of the changes of the immune atlas under female ovulation remain less understood.MethodsHere, we generated single cell transcriptomic profiles of 80,689 PBMCs in three representative statuses of ovulation dysfunction, i.e., polycystic ovary syndrome (PCOS), primary ovarian insufficiency (POI) and menopause (MENO), and identified totally 7 major cell types and 25 subsets of cells.ResultsOur study revealed distinct cluster distributions of immune cells among individuals of ovulation disorders and health. In patients with ovulation dysfunction, we observed a significant reduction in populations of naïve CD8 T cells and effector memory CD4 T cells, whereas circulating NK cells and regulatory NK cells increased.DiscussionOur results highlight the significant contribution of cDC-mediated signaling pathways to the overall inflammatory response within ovulation disorders. Furthermore, our data demonstrated a significant upregulation of oxidative stress in patients with ovulation disorder. Overall, our study gave a deeper insight into the mechanism of PCOS, POI, and menopause, which may contribute to the better diagnosis and treatments of these ovulatory disorder.

Keywords