PLoS ONE (Jan 2014)

Is the inherent potential of maize roots efficient for soil phosphorus acquisition?

  • Yan Deng,
  • Keru Chen,
  • Wan Teng,
  • Ai Zhan,
  • Yiping Tong,
  • Gu Feng,
  • Zhenling Cui,
  • Fusuo Zhang,
  • Xinping Chen

DOI
https://doi.org/10.1371/journal.pone.0090287
Journal volume & issue
Vol. 9, no. 3
p. e90287

Abstract

Read online

Sustainable agriculture requires improved phosphorus (P) management to reduce the overreliance on P fertilization. Despite intensive research of root adaptive mechanisms for improving P acquisition, the inherent potential of roots for efficient P acquisition remains unfulfilled, especially in intensive agriculture, while current P management generally focuses on agronomic and environmental concerns. Here, we investigated how levels of soil P affect the inherent potential of maize (Zea mays L.) roots to obtain P from soil. Responses of root morphology, arbuscular mycorrhizal colonization, and phosphate transporters were characterized and related to agronomic traits in pot and field experiments with soil P supply from deficiency to excess. Critical soil Olsen-P level for maize growth approximated 3.2 mg kg(-1), and the threshold indicating a significant environmental risk was about 15 mg kg(-1), which represented the lower and upper levels of soil P recommended in current P management. However, most root adaptations involved with P acquisition were triggered when soil Olsen-P was below 10 mg kg(-1), indicating a threshold for maximum root inherent potential. Therefore, to maintain efficient inherent potential of roots for P acquisition, we suggest that the target upper level of soil P in intensive agriculture should be reduced from the environmental risk threshold to the point maximizing the inherent potential of roots.