Terahertz Spectroscopic Signatures of Microcystin Aptamer Solution Probed with a Microfluidic Chip
Mingkun Zhang,
Zhongbo Yang,
Mingjie Tang,
Deqiang Wang,
Huabin Wang,
Shihan Yan,
Dongshan Wei,
Hong-Liang Cui
Affiliations
Mingkun Zhang
School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong 523808, China
Zhongbo Yang
Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Mingjie Tang
Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Deqiang Wang
Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Huabin Wang
Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Shihan Yan
Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Dongshan Wei
School of Electrical Engineering and Intelligentization, Dongguan University of Technology, Dongguan, Guangdong 523808, China
Hong-Liang Cui
Chongqing Engineering Research Center of High-Resolution and 3D Dynamic Imaging Technology, Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing 400714, China
Terahertz signature detection of biological samples in aqueous solution remains a great challenge due to the strong terahertz absorption of water. Here we propose a new preparation process for fabricating a microfluidic chip and use it as an effective sensor to probe the terahertz absorption signatures of microcystin aptamer (a linear single-stranded DNA with 60 nucleotides) dissolved in TE buffer with different concentrations. The microfluidic chip made of silicon includes thousands of 2.4 μm × 2.4 μm square-cross-section channels. One repeatable terahertz absorption signature is detected and recognized around 830 GHz, fitted to a Lorentz oscillator. This signature is theorized to originate from the bending of hydrogen bonds formed between adjacent hydrated DNA bases surrounded by water molecules. Furthermore, the low-lying vibrational modes are also investigated by molecular dynamics simulations which suggest that strong resonant oscillations are highly probable in the 815⁻830 GHz frequency band.