EPJ Web of Conferences (Oct 2010)
The cross-section data from neutron activation experiments on niobium in the NPI p-7Li quasi-monoenergetic neutron field
Abstract
The reaction of protons on 7Li target produces the high-energy quasi- monoenergetic neutron spectrum with the tail to lower energies. Proton energies of 19.8, 25.1, 27.6, 30.1, 32.6, 35.0 and 37.4 MeV were used to obtain quasi-monoenergetic neutrons with energies of 18, 21.6, 24.8, 27.6, 30.3, 32.9 and 35.6 MeV, respectively. Nb cross-section data for neutron energies higher than 22.5 MeV do not exist in the literature. Nb is the important material for fusion applications (IFMIF) as well. The variable-energy proton beam of NPI cyclotron is utilized for the production of neutron field using thin lithium target. The carbon backing serves as the beam stopper. The system permits to produce neutron flux density about 109 n/cm2/s in peak at 30 MeV neutron energy. The niobium foils of 15 mm in diameter and approx. 0.75 g weight were activated. The nuclear spectroscopy methods with HPGe detector technique were used to obtain the activities of produced isotopes. The large set of neutron energies used in the experiment allows us to make the complex study of the cross-section values. The reactions (n,2n), (n,3n), (n,4n), (n,He3), (n,α) and (n,2nα) are studied. The cross-sections data of the (n,4n) and (n,2nα) are obtained for the first time. The cross-sections of (n,2n) and (n,α) reactions for higher neutron energies are strongly influenced by low energy tail of neutron spectra. This effect is discussed. The results are compared with the EAF-2007 library.