JMIR Human Factors (Aug 2020)

Opportunities and Recommendations for Improving Medication Safety: Understanding the Medication Management System in Primary Care Through an Abstraction Hierarchy

  • Baumgartner, Andrew,
  • Kunkes, Taylor,
  • Clark, Collin M,
  • Brady, Laura A,
  • Monte, Scott V,
  • Singh, Ranjit,
  • Wahler Jr, Robert G,
  • Chen, Huei-Yen Winnie

DOI
https://doi.org/10.2196/18103
Journal volume & issue
Vol. 7, no. 3
p. e18103

Abstract

Read online

BackgroundDespite making great strides in improving the treatment of diseases, the minimization of unintended harm by medication therapy continues to be a major hurdle facing the health care system. Medication error and prescription of potentially inappropriate medications (PIMs) represent a prevalent source of harm to patients and are associated with increased rates of adverse events, hospitalizations, and increased health care costs. Attempts to improve medication management systems in primary care have had mixed results. Implementation of new interventions is difficult because of complex contextual factors within the health care system. Abstraction hierarchy (AH), the first step in cognitive work analysis (CWA), is used by human factors practitioners to describe complex sociotechnical systems. Although initially intended for the nuclear power domain and interface design, AH has been used successfully to aid the redesign of numerous health care systems such as the design of decision support tools, mobile patient monitoring apps, and a telephone triage system. ObjectiveThis paper aims to refine our understanding of the primary care office in relation to a patient’s medication through the development of an AH. Emphasis was placed on the elements related to medication safety to provide guidance for the design of a safer medication management system in primary care. MethodsThe AH development was guided by the methodology used by seminal CWA literature. It was initially developed by 2 authors and later fine-tuned by an expert panel of clinicians, social scientists, and a human factors engineer. It was subsequently refined until an agreement was reached. A means-ends analysis was performed and described for the nodes of interest. The model represents the primary care office space through functional purposes, values and priorities, function-related purposes, object-related processes, and physical objects. ResultsThis model depicts the medication management system at various levels of abstraction. The resulting components must be balanced and coordinated to provide medical treatment with limited health care resources. Understanding the physical and informational constraints on activities that occur in a primary care office depicted in the AH defines areas in which medication safety can be improved. ConclusionsNumerous means-ends relationships were identified and analyzed. These can be further evaluated depending on the specific needs of the user. Recommendations for optimizing a medication management system in a primary care facility were made. Individual practices can use AH for clinical redesign to improve prescribing and deprescribing practices.