PLoS Genetics (Jan 2012)

Allelic heterogeneity and trade-off shape natural variation for response to soil micronutrient.

  • Seifollah Poormohammad Kiani,
  • Charlotte Trontin,
  • Matthew Andreatta,
  • Matthieu Simon,
  • Thierry Robert,
  • David E Salt,
  • Olivier Loudet

DOI
https://doi.org/10.1371/journal.pgen.1002814
Journal volume & issue
Vol. 8, no. 7
p. e1002814

Abstract

Read online

As sessile organisms, plants have to cope with diverse environmental constraints that may vary through time and space, eventually leading to changes in the phenotype of populations through fixation of adaptive genetic variation. To fully comprehend the mechanisms of evolution and make sense of the extensive genotypic diversity currently revealed by new sequencing technologies, we are challenged with identifying the molecular basis of such adaptive variation. Here, we have identified a new variant of a molybdenum (Mo) transporter, MOT1, which is causal for fitness changes under artificial conditions of both Mo-deficiency and Mo-toxicity and in which allelic variation among West-Asian populations is strictly correlated with the concentration of available Mo in native soils. In addition, this association is accompanied at different scales with patterns of polymorphisms that are not consistent with neutral evolution and show signs of diversifying selection. Resolving such a case of allelic heterogeneity helps explain species-wide phenotypic variation for Mo homeostasis and potentially reveals trade-off effects, a finding still rarely linked to fitness.