Journal of the American Heart Association: Cardiovascular and Cerebrovascular Disease (Jan 2020)

Renal Hydrogen Peroxide Production Prevents Salt‐Sensitive Hypertension

  • Santiago Cuevas,
  • Laureano D. Asico,
  • Pedro A. Jose,
  • Prasad Konkalmatt

DOI
https://doi.org/10.1161/JAHA.119.013818
Journal volume & issue
Vol. 9, no. 1

Abstract

Read online

Background The regulation of sodium excretion is important in the pathogenesis of hypertension and salt sensitivity is predictive of cardiovascular events and mortality. C57Bl/6 and BALB/c mice have different blood pressure sensitivities to salt intake. High salt intake increases blood pressure in some C57Bl/6J mouse strains but not in any BALB/c mouse strain. Methods and Results We determined the cause of the difference in salt sensitivity between C57Bl/6 and BALB/c mice. Basal levels of superoxide and H2O2 were higher in renal proximal tubule cells (RPTCs) from BALB/c than C57Bl/6J mice. High salt diet increased H2O2 production in kidneys from BALB/c but C57Bl/6J mice. High sodium concentration (170 mmol/L) in the incubation medium increased H2O2 levels in BALB/c‐RPTCs but not in C57Bl/6J‐RPTCs. H2O2 (10 μmol/L) treatment decreased sodium transport in RPTCs from BALB/c but not C57Bl/6J mice. Overexpression of catalase in the mouse kidney predisposed BALB/c mice to salt‐sensitive hypertension. Conclusions Our data show that the level of salt‐induced H2O2 production negatively regulates RPTC sodium transport and determines the state of salt sensitivity in 2 strains of mice. High concentrations of antioxidants could prevent H2O2 production in renal proximal tubules, which would result in sodium retention and increased blood pressure.

Keywords