Frontiers in Endocrinology (Apr 2025)
Optimizing predictive features using machine learning for early miscarriage risk following single vitrified-warmed blastocyst transfer
Abstract
Research questionCan machine learning models accurately predict the risk of early miscarriage following single vitrified-warmed blastocyst transfer (SVBT)?DesignA dual-center retrospective analysis of 1,664 SVBT cycles, including 308 early miscarriage cases, was conducted across two reproductive centers. Multiple machine learning models, such as Logistic Regression, Random Forest, Gradient Boosting, and Voting Classifier, were developed. Metrics including Area Under the Curve(AUC), accuracy, precision, recall, F1 score, and specificity were used to evaluate model performance. Key predictors were identified through Mutual Information and Recursive Feature Elimination (RFE).ResultsMaternal age, paternal age, endometrial thickness, blastocyst quality, and ovarian stimulation parameters were identified as critical predictors. Compared to traditional statistical models such as logistic regression (AUC = 0.584), ensemble models demonstrated significantly improved predictive performance. The Voting Classifier achieved the highest AUC (0.836), accuracy (0.780), precision (0.914), and specificity (0.942), outperforming individual machine learning classifiers. The Gradient Boosting Classifier also exhibited strong performance (AUC 0.831, accuracy 0.777), confirming the effectiveness of ensemble learning in capturing complex predictors of early miscarriage risk.ConclusionEnsemble machine learning models, particularly the Voting Classifier and Gradient Boosting Classifier, significantly improve the prediction of early miscarriage following SVBT. These models provide accurate, individualized risk assessments, enhancing clinical decision-making and advancing personalized care in ART.
Keywords