Nanomaterials (Mar 2020)

A Highly Sensitive SERS and RRS Coupled Di-Mode Method for CO Detection Using Nanogolds as Catalysts and Bifunctional Probes

  • Dongmei Yao,
  • Guiqing Wen,
  • Lingbo Gong,
  • Chongning Li,
  • Aihui Liang,
  • Zhiliang Jiang

DOI
https://doi.org/10.3390/nano10030450
Journal volume & issue
Vol. 10, no. 3
p. 450

Abstract

Read online

Carbon monoxide (CO) is a commonly poisonous gas. It is important to detect CO in daily life. Herein, a new and sensitive surface enhanced Raman scattering (SERS) and resonance Rayleigh scattering (RRS) coupled di-mode method was developed for CO, based on gold nano-enzyme catalysis and gold nanoprobes. CO can react with HAuCl4 to generate gold nanoparticles (AuNPs) in pH 5.2 HAc-NaAc buffer. The generated AuNPs exhibited SERS activity at 1620 cm-1 in the presence of Vitoria blue B (VBB) molecular probes, and an RRS peak at 290 nm. Based on the AuNP bifunctional probes, the increased SERS and RRS intensities respond linearly with the concentration of CO in the range of 100−1500 ng/mL and 30−5230 ng/mL, respectively. To improve the sensitivity, the produced AuNPs were used as nano-enzyme catalysts for the new indicator reaction of HAuCl4-ethanol (En) to amplify the signal. The sensitive SERS method was coupled with the accurate RRS method to develop a sensitive and accurate SERS/RRS di-mode method for determination of 3.0−413 ng/mL CO, based on the AuNP-HAuCl4-En nanocatalytic reaction and its product of AuNPs as SERS and RRS bifunctional probes.

Keywords