PLoS Genetics (Apr 2017)

GRHL3 binding and enhancers rearrange as epidermal keratinocytes transition between functional states.

  • Rachel Herndon Klein,
  • Ziguang Lin,
  • Amelia Soto Hopkin,
  • William Gordon,
  • Lam C Tsoi,
  • Yun Liang,
  • Johann E Gudjonsson,
  • Bogi Andersen

DOI
https://doi.org/10.1371/journal.pgen.1006745
Journal volume & issue
Vol. 13, no. 4
p. e1006745

Abstract

Read online

Transcription factor binding, chromatin modifications and large scale chromatin re-organization underlie progressive, irreversible cell lineage commitments and differentiation. We know little, however, about chromatin changes as cells enter transient, reversible states such as migration. Here we demonstrate that when human progenitor keratinocytes either differentiate or migrate they form complements of typical enhancers and super-enhancers that are unique for each state. Unique super-enhancers for each cellular state link to gene expression that confers functions associated with the respective cell state. These super-enhancers are also enriched for skin disease sequence variants. GRHL3, a transcription factor that promotes both differentiation and migration, binds preferentially to super-enhancers in differentiating keratinocytes, while during migration, it binds preferentially to promoters along with REST, repressing the expression of migration inhibitors. Key epidermal differentiation transcription factor genes, including GRHL3, are located within super-enhancers, and many of these transcription factors in turn bind to and regulate super-enhancers. Furthermore, GRHL3 represses the formation of a number of progenitor and non-keratinocyte super-enhancers in differentiating keratinocytes. Hence, chromatin relocates GRHL3 binding and enhancers to regulate both the irreversible commitment of progenitor keratinocytes to differentiation and their reversible transition to migration.