eLife (Apr 2015)

The preRC protein ORCA organizes heterochromatin by assembling histone H3 lysine 9 methyltransferases on chromatin

  • Sumanprava Giri,
  • Vasudha Aggarwal,
  • Julien Pontis,
  • Zhen Shen,
  • Arindam Chakraborty,
  • Abid Khan,
  • Craig Mizzen,
  • Kannanganattu V Prasanth,
  • Slimane Ait-Si-Ali,
  • Taekjip Ha,
  • Supriya G Prasanth

DOI
https://doi.org/10.7554/eLife.06496
Journal volume & issue
Vol. 4

Abstract

Read online

Heterochromatic domains are enriched with repressive histone marks, including histone H3 lysine 9 methylation, written by lysine methyltransferases (KMTs). The pre-replication complex protein, origin recognition complex-associated (ORCA/LRWD1), preferentially localizes to heterochromatic regions in post-replicated cells. Its role in heterochromatin organization remained elusive. ORCA recognizes methylated H3K9 marks and interacts with repressive KMTs, including G9a/GLP and Suv39H1 in a chromatin context-dependent manner. Single-molecule pull-down assays demonstrate that ORCA-ORC (Origin Recognition Complex) and multiple H3K9 KMTs exist in a single complex and that ORCA stabilizes H3K9 KMT complex. Cells lacking ORCA show alterations in chromatin architecture, with significantly reduced H3K9 di- and tri-methylation at specific chromatin sites. Changes in heterochromatin structure due to loss of ORCA affect replication timing, preferentially at the late-replicating regions. We demonstrate that ORCA acts as a scaffold for the establishment of H3K9 KMT complex and its association and activity at specific chromatin sites is crucial for the organization of heterochromatin structure.

Keywords