Remote Sensing (Nov 2024)
Behavior and Energy of the M2 Internal Tide in the Madagascar–Mascarene Region
Abstract
Internal tides serve as essential intermediate steps in the cascading of oceanic energy, playing a crucial role in oceanic mixing. M2 internal tides are the dominant tidal constituent in many oceanic regions, significantly influencing ocean dynamics. The Madagascar–Mascarene Region has high-energy internal tides, but due to a lack of observational studies, their propagation remains underexplored and warrants further investigation. In this study, we used satellite altimetry data to capture the sea surface manifestation of the first-mode M2 internal tides in the region. The results show that the Mascarene Plateau plays a key role in shaping the region’s uneven internal tide distribution. The Mascarene Strait is the most intense generation area, with an east-west energy flux of 1.42 GW. Using the internal tidal energy concentration index, we decomposed the internal tidal beams, finding the primary beam oriented at 148°. These beams propagate outward for over 800 km, with a maximum distance exceeding 1000 km. Geostrophic currents intensify the northward refraction of westward-propagating internal tides in the Mascarene Basin, particularly between 15°S and 20°S.
Keywords