Applied Sciences (Mar 2024)
Analysis of Hybrid Ship Machinery System with Proton Exchange Membrane Fuel Cells and Battery Pack
Abstract
As marine traffic is contributing to pollution, and most vessels have predictable routes with repetitive load profiles, to reduce their impact on environment, hybrid systems with proton exchange membrane fuel cells (PEMFC-s) and battery pack are a promising replacement. For this purpose, the new approach takes into consideration an alternative to diesel propulsion with the additional benefit of carbon neutrality and increase of system efficiency. Additionally, in the developed numerical model, control of the PEMFC–battery hybrid energy system with balance of plant is incorporated with repowering existing vessels that have two diesel engines with 300 kWe. The goal of this paper is to develop a numerical model that analyzes and determines an equivalent hybrid ship propulsion system for a known traveling route. The developed numerical model consists of an interconnected system with the PEMFC stack and a battery pack as power sources. The numerical model was developed and optimized to meet the minimal required power demand for a successful route, which has variable loads and sees ships sail daily six times along the same route—in total 54 nautical miles. The results showed that the equivalent hybrid power system consists of a 300 kWe PEMFC stack and battery pack with 424 kWh battery and state of charge varying between 20 and 87%. To power this new hybrid power system, a hydrogen tank of 7200 L holding 284.7 kg at pressure of 700 bar is required, compared to previous system that consumed 1524 kg of diesel and generated 4886 kg of CO2.
Keywords