Applied Sciences (Aug 2021)
Evaluation of the Erosion Characteristics for a Marine Pump Using 3D RANS Simulations
Abstract
In the present study, an erosion analysis of an industrial pump’s casing and impeller blades has been performed computationally. Effects of various critical parameters, i.e., the concentration and size of solid particles, exit pressure head, and cavitation on the erosion rate density of the casing and blade have been investigated. Commercial codes CFX, ICEM-CFD, and ANSYS Turbogrid are employed to solve the model, mesh generation for the casing, and mesh generation of the impeller, respectively. The Eulerian-Eulerian method is employed to model the pump domain’s flow to solve the two phases (water and solid particles) and the interaction between the phases. Published experimental data was utilized to validate the employed computational model. Later, a parametric study was conducted to evaluate the effects of the parameters mentioned above on the erosion characteristics of the pump’s casing and impeller’s blade. The results show that the concentration of the solid particles significantly affects the pump’s erosion characteristics, followed by the particle size and distribution of the particle size. On the other hand, the exit pressure head and cavitation do not affect the erosion rates considerably but significantly influence the regions of high erosion rate densities.
Keywords