Fibers (Jul 2022)

The Feasibility of Producing Particleboards with Waste Wood from Civil Construction and Epoxidized Waste Cooking Oils

  • Washington Moreira Cavalcanti,
  • Leandro Soares de Oliveira,
  • Rômulo Maziero,
  • Juan Carlos Campos Rubio

DOI
https://doi.org/10.3390/fib10080062
Journal volume & issue
Vol. 10, no. 8
p. 62

Abstract

Read online

The feasibility of using epoxidized waste cooking oils as a partial replacement for synthetic resins in the manufacture of lignocellulosic composites where the reinforcement is comprised of mechanically ground wood from civil construction waste wood (CCWW) was investigated. For this study, the wood-epoxy composite was prepared using the thermo-curing technique, and wood particle contents of 20 and 30% (m/m) were studied with a matrix comprised of 50% epoxidized vegetable oil and 50% petroleum-based epoxy resin. The specific mass of the composites was in the range of 1130 to 1380 kg/m3, with the lowest value for the highest content of wood particles. Fourier transform infrared spectroscopy was successfully used to monitor the epoxidation of the vegetable oils and the subsequent curing of the epoxy resins and particleboards. Thermal stability of the composite was dictated by its lignocellulosic content, and significant mass losses occurred at temperatures higher than 300 °C, regardless of the wood particles content. The introduction of CCWW particles into the polymeric matrices did not promote the desired effect of improving the mechanical properties in regard to those of the cured blend of epoxy resins. However, the produced particleboards still met the standards of the American National Standards for general purpose boards in regard to their physical and mechanical properties (e.g., density, tensile strength). Hence, the use of wood waste and waste cooking oil to produce particleboards was deemed justified within the framework of a cascading lifecycle-extended service for both wastes.

Keywords