A Ferulic Acid Derivative FXS-3 Inhibits Proliferation and Metastasis of Human Lung Cancer A549 Cells via Positive JNK Signaling Pathway and Negative ERK/p38, AKT/mTOR and MEK/ERK Signaling Pathways
Shi-Jun Yue,
Peng-Xuan Zhang,
Yue Zhu,
Nian-Guang Li,
Yan-Yan Chen,
Jia-Jia Li,
Sai Zhang,
Ru-Yi Jin,
Hao Yan,
Xu-Qin Shi,
Yu-Ping Tang,
Jin-Ao Duan
Affiliations
Shi-Jun Yue
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Peng-Xuan Zhang
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Yue Zhu
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
Nian-Guang Li
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
Yan-Yan Chen
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Jia-Jia Li
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Sai Zhang
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Ru-Yi Jin
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Hao Yan
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Xu-Qin Shi
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
Yu-Ping Tang
Key Laboratory of Shaanxi Administration of Traditional Chinese Medicine for TCM Compatibility, and State Key Laboratory of Research and Development of Characteristic Qin Medicine Resources (Cultivation), and Shaanxi Key Laboratory of Chinese Medicine Fundamentals and New Drugs Research, and Shaanxi Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Shaanxi University of Chinese Medicine, Xi’an 712046, Shaanxi Province, China
Jin-Ao Duan
Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, and Jiangsu Key Laboratory for High Technology Research of TCM Formulae, and National and Local Collaborative Engineering Center of Chinese Medicinal Resources Industrialization and Formulae Innovative Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, Jiangsu Province, China
Lung cancer is one of the most common malignancies and is an increasing cause of cancer-related deaths. In our previous study, a series of ferulic acid (FA) derivatives were designed and synthesized; they exhibited positive anti-cancer activities, especially for a compound labelled FXS-3. In this study, a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay was performed, wherein it revealed the inhibitory effect of FXS-3 on the proliferation and metastasis of human lung cancer A549 cells. The further flow cytometry assay showed that FXS-3 induced apoptosis of A549 cells induced cell cycle arrest at the G0/G1 phase. The trans-well migration and Matrigel invasion assays revealed that FXS-3 inhibited the migration and invasion of A549 cells. By the western blotting analysis, FXS-3 increased the expression of B-cell lymphoma-2 (Bcl-2) associated X protein (Bax)/Bcl-2 ratio, inhibited matrix metalloproteinase (MMP)-2 and MMP-9, and regulated the extracellular signal-regulated kinase (ERK)/p38, c-Jun N-terminal kinase (JNK), protein kinase B (AKT)/mechanistic target of rapamycin (mTOR), as well as mitogen-activated protein kinase (MEK)/ERK signaling pathways. The subsequent A549 xenograft-bearing mouse model and tail vein injection of A549 cells induced pulmonary tumor metastasis model showed that FXS-3 significantly restrained the tumor growth and metastasis. In conclusion, FXS-3 might inhibit proliferation and metastasis of human lung cancer A549 cells by positively regulating JNK signaling pathway and negativly regulating ERK/p38, AKT/mTOR, and MEK/ERK signaling pathways, which provides important scientific basis for the development of anti-cancer drugs about FA derivatives.