BMC Bioinformatics (Mar 2008)

Chromhome: A rich internet application for accessing comparative chromosome homology maps

  • Cox Tony,
  • Stalker James,
  • Rens Willem,
  • Nagarajan Sridevi,
  • Ferguson-Smith Malcolm A

DOI
https://doi.org/10.1186/1471-2105-9-168
Journal volume & issue
Vol. 9, no. 1
p. 168

Abstract

Read online

Abstract Background Comparative genomics has become a significant research area in recent years, following the availability of a number of sequenced genomes. The comparison of genomes is of great importance in the analysis of functionally important genome regions. It can also be used to understand the phylogenetic relationships of species and the mechanisms leading to rearrangement of karyotypes during evolution. Many species have been studied at the cytogenetic level by cross species chromosome painting. With the large amount of such information, it has become vital to computerize the data and make them accessible worldwide. Chromhome http://www.chromhome.org is a comprehensive web application that is designed to provide cytogenetic comparisons among species and to fulfil this need. Results The Chromhome application architecture is multi-tiered with an interactive client layer, business logic and database layers. Enterprise java platform with open source framework OpenLaszlo is used to implement the Rich Internet Chromhome Application. Cross species comparative mapping raw data are collected and the processed information is stored into MySQL Chromhome database. Chromhome Release 1.0 contains 109 homology maps from 51 species. The data cover species from 14 orders and 30 families. The homology map displays all the chromosomes of the compared species as one image, making comparisons among species easier. Inferred data also provides maps of homologous regions that could serve as a guideline for researchers involved in phylogenetic or evolution based studies. Conclusion Chromhome provides a useful resource for comparative genomics, holding graphical homology maps of a wide range of species. It brings together cytogenetic data of many genomes under one roof. Inferred painting can often determine the chromosomal homologous regions between two species, if each has been compared with a common third species. Inferred painting greatly reduces the need to map entire genomes and helps focus only on relevant regions of the chromosomes of the species under study. Future releases of Chromhome will accommodate more species and their respective gene and BAC maps, in addition to chromosome painting data. Chromhome application provides a single-page interface (SPI) with desktop style layout, delivering a better and richer user experience.