Advances in Materials Science and Engineering (Jan 2018)
Physical and Compaction Properties of Granular Materials with Artificial Grading behind the Particle Size Distributions
Abstract
Granular materials in geotechnical engineering is generally considered to be mixtures of clay, sand, and gravel that commonly appear in slopes, valleys, or river beds, and they are especially used for the construction of earth-rock-filled dams. The complexity of the constitution of granular materials leads to the complexity of their properties. Particle size distribution (PSD) has a great influence on the strength, permeability, and compaction behavior of granular materials, and some implicit correlation may exist between the PSD and the compaction properties of granular materials. Field testing and statistical analysis are used to study the physical and compaction properties of granular materials with artificial grading behind the particle size distributions. The statistical properties in PSD of dam granular materials and how the variation of PSD renders statistical constant are revealed. The statistical constants of three types of dam granular materials are 2.459, 2.475, and 2.499, respectively, on average. These statistical constants have a positive correlation with dry density and a negative correlation with moisture content. According to this characteristic and little deviation between two different calculation methods (from grading analysis and based on the Weibull distribution), the presentation of the statistical analysis ensures the validity of the Weibull function’s description of the granular materials with artificial grading. After fitting the Weibull function to the PSD curve, the relationship between the Weibull parameters and the compaction degree in different soil samples is consistent with that in different types, providing guiding significance for evaluating and selecting dam granular materials.