Energies (Jun 2023)
Recent Trends in Highly Porous Structured Carbon Electrodes for Supercapacitor Applications: A Review
Abstract
Globally, environmental and energy conservation concerns have sparked a push for more efficient and long-term energy sources. Researchers worldwide have put significant effort into developing supercapacitor-based energy storage devices by fabricating electrode materials from affordable porous carbon. The advantages of porous carbons are low-cost processes, high porosity, high surface area, facilitation of surface modification, high conductivity, high mechanical stability, high chemical stability, facilitation of fast ion transport, high rate capability, and high specific capacitance. Using them as electrodes in supercapacitors (SCs) may lead to better performance in specific capacitance and long-term cyclic stability. This study focuses on the recent development of electrode materials for SCs using porous carbons obtained from several diverse sources, such as biomass, polymers, lignite, metal salts, melamine, etc. Therefore, the topic of this review is the most current development of electrode materials for SCs applications. SCs were subjected to a battery of electrochemical tests, which focused on their performance from a crucial perspective, concentrating on the porous carbon’s surface area and surface functional groups. The report also highlights the supercapacitor’s prospects and challenges.
Keywords